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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-1220

STABILITY OF TEREE-DIMENSIONAL COMPRESSIBLE

BOUNDARY LAYERS I

By Eli Re shotko

SUMMARY

For Reynolds numbers sufficiently large that the dissipation terms

in the disturbance energy equation are negligible, the stability of a

three-dimensional boundary layer to a plane-wave disturbance of arbitrary

orientation reduces to a two-dimensional stability problem governed by

the boundary-layer velocity profile in the direction of wave propagation

and by the mean temperature profile. Solution procedures are presented

and the eigenvalue problem formulated including temperature fluctuations

and a thermal boundary condition.

INTRODUCTION

The available studies of the stability of compressible laminar

boundary layers to infinitesimal disturbances have been restricted es-

sentially to two-dimensional boundary layers, while those few papers

available on the stability of three-dimensional boundary layers consider

only incompressible flow. With the current interest in compressible

three-dimensional boundary layers encountered, for example, on swept

wings or on yawed bodies in supersonic and hypersonic flow, it is of

some interest to formulate an analysis for the stability of three-

dimensional compressible boundary layers.

All the disturbances considered herein are plane waves. For a two-

dimensional boundary layer those disturbances that propagate in the di-

rection of boundary-layer development (local free-stream direction) are

called two-dimensional disturbances, while those propagating at some

angle to the local free-stream direction are called three-dimensional

disturbances. For a three-dimensional boundary layer where the local

free stream is not in the direction of the pressure gradient and_ there-

fore, one might say that there is no single direction of boundary-layer

iThis work was begun while the author was at the California Insti-

tute of Technology and completed at the Lewis Research Center.



development, it is convenient to consider all disturbances as three-
dimensional and to identify them by the angle of the direction in which
they propagate relative to somereference direction.

The present study considers only "subsonic" disturbances_ that is,
disturbances that move subsonically with respect to the componentof
the free stream in the direction of wave propagation. Such disturbances
have amplitudes that decay exponentially in the free stream. A disturb-
ance that propagates supersonically with respect to the free stream would
be expected to have a nonvanishing amplitude far from the wall.

The stability of two-dimensional compressible boundary layers to
two-dimensional disturbances was first considered by Lees and Lin (refs. i
and 2). They concluded that for subsonic and slightly supersonic flows
the stability characteristics of a given boundary-layer profile are un-
affected by temperature fluctuations. Specifically, the stability char-
acteristics are determined entirely by satisfying velocity fluctuation
boundary conditions. Dunn and Lin (ref. 3) found this conclusion to be
invalid for moderately high supersonic Machnumbers, and they discussed
thermal boundary conditions; however, they did not present any calcula-
tions that include consideration of the energy equation and thermal
boundary conditions. This matter was further pursued by Dunn, Lin_ and
Mack and independently by Lees and the present author. The latter group,
in a critical evaluation (refs. 4 and 5) of the order of magnitude and
solution procedures used in solving the compressible boundary-layer sta-
bility problem, succeededin identifying the leading and higher order
viscous and conductive effects on the disturbances_ and, in fact, used
the leading and next order terms (including a dissipation term in the
energy equation) in the calculation of neutral stability characteristics
of insulated compressible boundary layers. The logical completion of
the analysis of Dunn and Lin (ref. 3), including temperature fluctuations
and a thermal boundary condition but considering only the leading viscous-
conductive effects on the disturbances (e.g., no dissipation term in the
energy equation), is presented in appendix D of reference _ and also by
Mack (ref. 6).

The studies of references i to 6 consider the boundary layer to be
a "nearly-parallel" flow and treat the problem under the premise that
the parallel flow disturbance equations apply; thus, terms involving the
meannormal velocity and longitudinal derivatives of meanquantities are
omitted. By meansof the parallel flow assumptions the stability of a
local profile is calculated as if only that profile existed from -_ to
+_. In fact, Dunn (ref. 7) and Cheng (ref. 8) showthat the meanvertical
velocity does not enter until the second asymptotic approximation to the
viscous solutions. Thus, if only the leading terms needbe considered,
the parallel flow approximation is a valid one. The work described
herein makes the parallel flow assumptions.



With regard to the stability of two-dimensional parallel flows to
three-dimensional disturbances, Squire (ref. 9) showsthat for an in-
compressible fluid, the disturbance equations can be transformed to the
completely two-dimensional Orr-Sommerfeld equation and that the two-
dimensional disturbance is the least stable. Dunnand Lin (ref. 3) con-
sider the stability of a two-dimensional compressible boundary layer to
three-dimensional disturbances. They showthat when only the leading
viscous-conductive effects on the disturbances are considered the equa-
tions for three-dimensional disturbances can be transformed to those for
two-dimensional disturbances. They carefully point out that for compres-
sible flow these transformed equations are not the equations of a proper
two-dimensional disturbance so that no "families of solutions" are ob-
tainable; however, the transformation does permit the use of solution
procedures for two-dimensional disturbances in problems of three-
dimensional disturbances.

The stability of three-dimensional boundary layers to three-
dimensional disturbances is considered for incompressible flow by Owen
and Randall (ref. i0) and by Gregory, Stuart, and Walker (ref. ii).
Their results for a parallel flow have been concisely summarizedby
Moore (ref. 12): "For a disturbance assumedto be moving in a certain
direction, the eigenvalue problem maybe treated as a two-dimensional
one, governed by the boundary-layer velocity profile measured in that
direction." Of course, for incompressible flow the energy equation is
irrelevant and within the framework of the parallel flow assumption this
statement is exact. It is shownherein that, for compressible flows,
the transformation implied by Moore's statement applies exactly for the
continuity and momentumequations but only for the leading terms of the
energy equation. As already pointed out in reference 3, the dissipation
terms do not all transform.

Accordingly, if consideration of the problem is restricted to the
leading terms of the disturbance equations according to Dunn-Lin order-
ing, the eigenvalue problem maybe treated as two-dimensional governed
by the boundary-layer velocity profile in the direction of wave propaga-
tion and by the meantemperature profile. The formal solution of the
problem, which is according to appendix D of reference 4, is presented
and the resulting secular equation and a numberof its special cases are
discussed.

EQUATIONSOFINFINITESIMALDISTURBANCES

Consider a point on the surface of a body on which there develops
a three-dimensional boundary layer. It is assumedthat the profile of
the steady laminar boundary layer is knownat this point in terms of
the componentprofiles in two mutually orthogonal surface coordinate
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directions x* and z* (see following sketch).

X

The normal coordinate

Ue
Direction

of wave

propagation

Z

is y*. (All symbols are defined in appendix A.) The velocities in the

x*- and z*-directions are u* and w*, respectively. The resultant ex-

* + w_ z makes an angle g = tan- (We/U e)ternal velocity U e =

with the x -axis.

Dunn and Lin (ref. 3), by order of magnitude arguments, present dis-

turbance equations for a parallel or nearly parallel flow at very large

Reynolds number. The developments in the text of this report are based
on the counterparts of the Dunn and Lin disturbance equations applicable

to a three-dimensional mean flow. These equations are sufficient for

the purposes of the present report; nevertheless_ it is of some interest

to go through the same operations with more complete disturbance equa-

tions so that the nature of the approximation will be better understood.

Accordingly_ the results for analogous operations on the complete paral-

lel flow disturbance equations are given in appendix B. Taking the spe-

cific heats and Prandtl number to be constant and the viscosity to be a

function of temperature alone_ the disturbance equations for very large

Reynolds numbers are:

Continuity:

(l)



Momentum :

_* +u*_+w*_+v*' _ :- ox* %.2
(_,)

P tt'6-7_-+ u* + w*
= _ _ + _* ___2_*' (3)

_* %.2

./_*' _.,
p _t_-_-+ u* x_-xS-- _*' _*_ _ + ix* _w*'

+w*_+v*' _-_J=- oz* %.2 (4)

_er_:

./_*' _*' _*' _m._
\t_-E_-+ u* _ + w* _ + v*,

a _)y.2
(s)

State :

p*'-__*--+ m.-- (6)
p* p* T*

In these equations primed quantities are disturbance quantities; whereas

unprimed quantities are mean quantities.

A significant characteristic of this system is the absence of dis-

sipation terms in the energy equation. This absence makes possible the

following transformation to a completely two-dimensional form. The dis-

sipation terms are small only when the Reynolds number is very large so

that the propriety of a given calculation depends on an a posteriori

demonstration that the calculated Reynolds number is sufficiently large.

It is shown in appendix B that the dissipation terms do not transform.

Dimensionless Variables

Expressing equations (i) to (6) in dimensionless form requires

choosing suitable reference quantities. The reference length will be
.

called Lre f and be of the order of magnitude of some boundary-layer

thickness. The reference pressure is the mean boundary-layer pressure

which is constant at the external stream value in accordance with the

boundary-layer theory. For the boundary-layer mean flow_ p is

identically unity. The reference temperature will be some average tem-

perature and will be called Tre f. Until the form of the disturbance
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is specified_ the choice of the reference velocity is not clear. Tem-.
porarily, it will be given the symbol Ure f. The reference time is then

Lref/Ure f. The dimensionless forms of equations (i) to (6) are:

Continuity:

bp' U_ bp'
t_- + u -- cosU_ef _- U* _P' v' -P x_-- ÷ _-- ++ w USe----_ sin Y z_ + =

(7)

Momentum:

_(t_-£- u_ _'p + _-- cos
U_e f x_

+ _ u_ _, _ u_
USe-__ sin Y z_ + v' _ Ur-_ef cos /

i _ + i _2u '
Y_ef Reref

(s)

_/_t__ u_ _,p + u- cos
U_e f x_

+ w _ sin
ref

I

rMr2ef

i _2V'

Rere f _2
(9)

pt t_ + u -- cos 'Is + w sin • + v _U_ef x_- Uref_ _--z _ U_er

_ef Reref

sin

_2w ,

by2
(lO)

Energy :

pt t_- + U--U.ef cos Y x_-- + w --Uref.sin "isz_-- + ""'

*_<'__e '= + u U_ef cos _ +

i a _sm_.__.L'+--
Rere f a _d2

w Uref sin Y

(ii)



State :

where

T Ip,___i + _ (12)
P T

Uref (13)

Mre f = _/FR,T_e f

UrefLref (14)Rere f =
Vref

Form of Disturbance

Consider the disturbance to be an oblique plane wave propagating

at an angle @ with respect to the x-direction. A fluctuating quantity

is then described by the relation

Q'(x,y,z,t) = q(y)exp[i_(x cos @ + z sin ® - ct)] (1S)

where _ is the wave number of the disturbance and c is the disturb-

ance propagation velocity. The wave number is considered as a real

quantity_ while the propagation velocity is complex. Disturbances are

neutral for ci = 0 and are amplified for ci > 0 or damped for

ci < O.

Introduction of relations (i5) into equations (7) to (12) yields

the following set of reduced dimensionless disturbance equations: (From

these equations on primes denote differentiation with respect to y.)

Continuity:

U_ _ U e

i _ cos @ cos _ + w Ur-_ef sin e sin _ - r + p'_Uref

= -p(9' + if cos e + ih sin ®) (16)

Momentum:

_P U_efcose cos_+ w U_efsine sin_ - f + _' U_ef
cos

i_ cos ®
+---_ f" (17)

YM_e f Reref
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_ 96

Ue

i_2p U.e----_ cos @ cos • + w UeU_ef sin @ sin Y - c)_ =
y[!

+ __i5__ oxp"
Reref_ef

(18)

U_ U*
-- -- e .

_P u COS @ cOS _ + w U.ef sin 8 sin • - h + _w' TT-Fr---slnUref Ure f

ie_ sin @
+__a__,, (19)

TM_e f Reref

Energy:

_p Ue U e
U_ef cos @ cos Y +_ sin @ sin • - @ + _fUref

= is U_ef cos _ cos _ + Q U_ef sin @ sin Y -

+ ___!__a e" (20)
Reref

State:

r 8
= - + - (21)

p T

Transformation to Two-Dimensional System

If an effective dimensionless mean velocity is defined as

Ue (_ cos 0 cos • + _ sin @ sin _)
W - USef

and Ure f

the reference velocity is

(22)

chosen so that W = i at the outer edge of the boundary layer,

* (e - _) (23)Ure f U_e cos



As might have been expected, this quantity is the componentof the re-
sultant external velocity in the direction of wave propagation. Thus

W= u cos _ cos Y + w sin @ sin Y (24a)
cos(e - _)

u w

u + w tan e tan

1 + tan _ tan
(2_b)

When the x and z velocity disturbances are combined in the man-

ner

= f cos e + h sin e (25)

and the first momentum equation is formed from equation (17) multiplied

by cos 8 plus equation (19) multiplied by sin @_ the disturbance

equations become:

Continuity:

i(W - c)r + p'_ = -p(_' + i_) (26)

Momentum:

p[i(W - c)_ + W'_] = - i____ + _ _,,

Y_ef aReref

(27)

Energy:

State:

ip_2 (W c)_ _'- = - + .__H.__ o_qO"

_M2ef Reref

p[l(W - c)e + T'q_] = i (W - c)_ + _Reref q

(28)

(29)

r e
= - + - (3o)

p T

The boundary conditions are:



i0

At the wall, y = O,

f--O

h--O

_=0

@--0

3=0

(31)

As y _ _,

h

qo=O

8=0

_= 0

(32)

The equations and boundary conditions (26) to (32) are in the form

of those for a two-dimensiona!boundary layer with respect to two-

dimensional disturbances. The techniques available from references 3 to

6 can be used in solving these equations. The wall-temperature boundary

condition chosen here is not in the most general form. A more general

boundary condition is a8w + bS_ = 0 where a and b are constants

depending on the surface material_ its thickness_ the disturbance fre-

quency and the method of internal cooling if one is employed (see appen-

dix of ref. 3). Since most surface materials have thermal conductivities

much greater than that of gases, any temperature fluctuations in the gas

would be almost completely damped at the wall and the condition e(o)= 0

is reasonable for most purposes.

The solutions to equations (26) to (30) yield results for the com-

bined longitudinal velocity fluctuation amplitude _ but not for the

components f and h. To obtain f; it is necessary first to solve

equations (26) to (30) and to determine the appropriate eigenvalues,

then to substitute these eigenvalues and the corresponding @ and

eigenfunctions into equation (17). Integration of equation (17) will

yield the distribution of the amplitude function f. The amplitude func-

tion h can then be obtained by using equation (25).
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SOLUTIONOFDISTURBANCEEQUATIONS

Following the procedures of references i to 7, two of the solutions
to the linear system (eqs. (26) to (30)) are inviscid solutions, while
the remaining ones are viscous.

Inviscid Solutions

A solution is sought to the disturbance equations of the form

i
q(Y) = qO(Y) + _ee ql(y) + " (33)

The resulting equations for the zeroth approximation qo are the inviscid
equations_ since they are the sameas those obtained by ignoring viscosity
and conductivity altogether. In the inviscid equations, which are as fol-
lows, the subscript zero is omitted since the qo functions are the only
ones that will be obtained by this method:

Continuity:

_o'+ iJ - _-_ + i(w - c) - = o (34a)

Momentum:

i J + _- _--- r_2
(3_b)

(34c)

Energy:

i 0+T_: i(w- c) _ (3_d)

The Reynolds and Mach n_bers in equations (33) and (34) that will be

used for the remainder of the analysis are defined as

 efL ef)

V e

_*efr (33)
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Also, the mean and fluctuating temperatures will hereinafter be referred

to the external mean flow temperature.

The quantities _ and 8 can be eliminated from equations (34a),

(34b), and (34d) so that equations (34) can be written (following ref. i)

(36)

These equations can in turn be written as a second-order linear differ-

ential equation in either of the dependent variables _ or _. It has

been customary to consider the solution of the second-order equation in

the variable _, which is proportional to the normal velocity fluctuation

amplitude. In the present analysis, the solution procedure follows that

of references 4 and 5 where the inviscid equation is written as follows

in terms of the pressure fluctuation amplitude _:

Following Heisenberg and Lin, it has been customary to solve the

inviscid equation in the form of a convergent series in powers of _2.

References 4 and 5 show that this procedure is inadequate for supersonic

and hypersonic boundary layers and suggest the following more exact pro-

cedure. (A complete description of the Heisenberg-Lin procedure for com-

pressible boundary layers is given by Mack (ref. 6).)

Equation (37) can be converted into a first-order nonlinear equation.

Let

_S

Equation (37) then becomes

G'--[i _2(W - c)2] #2W'- T +_-c
T _

The outer boundary condition on G is obtained by considering the solu-

tions to equation ($7) for large y and for i - (l/H) _ c _ i. These

solutions are

,_ ,.,e---o.I_/1-_2(1-c)2 y (39)
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Since disturbance amplitudes of subsonic disturbances are expected to

decay far from the wall, the negative exponent is chosen in equation (39).

The outer boundary condition on G is

_(.) _/i - _2(i- c)2-- (40)
c_

The balance of the procedure presented is for neutral disturbances,

c = Cr, ci = O. Equation (38) is a complex equation and is split into

the following real and imaginary equations:

Gr T c

W !

_)_r- _2(_2r"_[) (Ala)

G_! = (_'--2W--c T_)G i - _2(2GrGi) (41b)

The outer boundary conditions are

_r(_)= _i(_)-_/i=-0_2(i__ c)2 )
(42 )

There is a logarit_ic singularity of the inviscid equation (eq. (37))

at the point where W = c; this point is referred to as the critical

point. The expressions for G in the neighborhood of the critical point

are obtained by series expansion (method of Frobenius) of equation (37)

and the definition of G. The result from reference A is

G r = -q - Aq 2 inlq I + (const)q 2 - A2q 5 inlq I

+ IA(const) - (2B - 2A2 +--_2w&2 )]Te + 2 _5 + . . (43)

G i =

q < _q2(l + AN + . .)
(= = 3.i4i59) (&&)

where

q=Y-Yc
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A = _ - (4s)
W e T e W_ Ldy\ T/J c

and

Wc_ w$', _ _$

B= _w_2+sw_ 2_ro ATc (46)

The calculation procedure for the inviscid solutions is as follows:

For a given profile (W,T) and value of c:

(I) Evaluate A and B. Choose a value of _. Evaluate the outer

boundary condition from equation (42).

(2) Assume some value for the constant in equation (43). Evaluate

Gr for a small positive value of q (Gi = 0).

(5) Continue evaluation of G r by integration of equation (4ia) to

the outer edge of the mean flow. Compare the result with the outer

boundary condition (42).

(4) Repeat steps 2 and 5, adjusting the constant until the outer

boundary condition is satisfied.

(5) Use the value of the constant from step 4 to evaluate Gr and

Gi for some small negative value of q.

(6) Continue evaluation of Gr and G i by simultaneous integration

of equations (41).

(7) Record at least the values of Gr and Gi at the wall (y = 0)

since they will be used in determining the stability characteristics.

Viscous Solutions

The usual procedure in obtaining viscous solutions has been to solve

a set of reduced equations that retain terms up to a certain order; near

either the critical point or the surface. The ordering parameter is de-
noted e where

i

(_e)n
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Lees and Lin (ref. i) used an ordering procedure valid in the neighbor-

hood of the critical layer to obtain viscous solutions, and then used

these solutions to satisfy wall boundary conditions. Such a procedure,

if at all valid, is so only when the critical point is close to the wall.

The ordering procedure of Dunn and Lin (ref. 3) assumes the region of the

wall to be distinct from the critical layer and leads to a set of reduced

equations valid near the wall but not necessarily valid at the critical

layer. Because of the desire to obtain proper representations of the

rapidly varying viscous solutions in the vicinity of the wall to satisfy

wall boundary conditions, it seems reasonable to use Dunn-Lin ordering

at all times. The validity of Dunn-Lin ordering even in the limit c _ 0

now remains to be demonstrated.

The viscous effects near the wall are restricted to a narrow layer

which does not include the critical point if it is shown that the thick-

ness of that layer 5w is smaller than the height to the critical point

Yc" An approximate (asymptotic) magnitude for 5w is

while for e _0, Yc = c/W_ and thus

Yc c \cuRe c/

This ratio may be more easily evaluated when expressed in terms of z,

the argument of the Tietjens function. As c _ O_

so that the ratio 5w/y c may be estimated as

Yc

As long as z _ 2, the premise underlying Lees-Lin ordering, namely, that

the wall is in the neighborhood of the critical point3 seems invalid.

Since in most cases of interest z _ 2, it seems reasonable to expect

Dunn-Lin ordering to hold for any surface temperature even as c * O.

It is questionable whether Lees-Lin ordering ever applies at the wall.

Strictly speaking, it probably does not apply, but practically spesking_

it holds whenever the resulting equations are the same as by Dunn-Lin

ordering which occurs3 for example_ for incompressible flow.
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Wenow proceed with the Dunn-Lin ordering. Meanflow quantities and
their derivatives are of unit order. With the quantity (W - c) taken to
be of order unity and differentiation of a disturbance amplitude with re-
spect to y changing its order of magnitude by 1/e_ a consistent set of
disturbance magnitudes are

r ~ e ~ J _ ~ c_ _/y_ ~ c2J (_7)

If the quantity _ is eliminated between equations (27) and (28) and the

orders of magnitude of the various terms are evaluated with the aid of

equation (47), the leading terms that result comprise the following equa-

tions :

Continuity:

_' +i_ i(w-c)e (48)= T

Momentum:

_,,, _i_e(w- c) _, =o (49)

Energy:

e" - io_e(w - c) e = o (so)
V

with

l (Sl)
6 ~ (cuRe)l/?._

Of the six linearly independent sets of solutions to equations (48)

to (50), solutions 1 and 2 are identified with the inviscid solutions,

solutions 3 and 4 are those where #' _ 0 but 8 = O, and solutions S

and 8 are those for which _ = 0 and e _ O. The aforementioned num-

bers will appear as subscripts to identify the solutions.

Consider first the momentum equation (eq. (49)). Following Tollmien

(ref. 13), make the transformations

- c (52)
Y= v
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and

Then equation (49) becomes

i_eY + @(i)] 3_ = 0

d2

dy 2

The second term in the bracket of equation (54) is of order

compared with the first bracketed term and may be omitted.

(54) becomes

(53)

(54)

Thus equation

d2 _ i_eYJ = 0 (55)

dy 2

Now let

= (_)i/3y (ss)

so that equation (55) becomes

d2_

a_2
i(ar = o (sv)

which is identical in form to that solved by Lees and Lin (ref. i). Equa-

tion (57) has two linearly independent solutions

= _1/2. (l 1 3/2]% _ _1/3[_ (i_) (SSa)

and

.llz.(2) 3/s] (5_)

Solution (58b) is rejected immediately since it grows exponentially for

large _ (large y) and cannot possibly satisfy the outer boundary con-

ditions on J and 9" Frc_ this set_ therefore_ only solutions with

subscript 3 are pertinent to the problem. From equations (S3) and (58a)

the solution for J3 is

#dy]3/2[dy_ /_ _i/2,(i) 3/2]_5 = kaY/ \_) _ _i/3[_ (it) d_
OO

(59a)
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With recourse to equation (48) the solution for _5 is

{1/2_(i)[2
1/31_(i{)3/2]d_ d{ (5Sb)

and_ of course;

e3 --0 (59c)

In performing the integrations to obtain _3 and 93 (and also

95 in eq. (65c)), quantities such as dy/dY, dY/d_ and mean flow func-

tions were taken outside the integral sign since they are slowly varying

compared with the balance of the integrand. Slowly varying functions are

those for which d/dy N @(!). This simplification incurs an error no

larger than order (c_e)-i/3.

The energy equation (eq. (SO)) can be written in a form similar to

equation (54) through the transformations

3 6(w - c)
YO= _ ' v (60)

and

._fa-6o [,,<w- c)-1/,_
e= e._7-- eL ,_r° (6l)

After the unit order term is dropped, compared with the term of order

(_e), let

to - (_e)z/3Yo (62)

Then the energy equation becomes

(63)

which has the solutions

,l/<.(l) ir_0)5/2]% "_SO '1-l/3[_ ( (64a)
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and

_1/2..(2)F2 i_o)S/2] (64b)% = _o _lls[_(

The solution @6 grows exponentially for large tO (large y) so that

it too is dropped because it cannot satisfy the outer boundary conditions.

Then for solutions with subscript 5

'_5 = o (6sa)

From equations (61) and (84a)

/i,y__]l/<l/2..(l)r2 S/2] (6_)

and from (65a), (6Sb), and the continuity equation (48)

•
- _d_o] ,I/2_(I)F2 i_o)Sf2]d_= Y kdCo/i So l/sL_ ( o

(SSc)J_

Eigenvalue Problem

The solutions of the disturbance equations must now be combined to

satisfy the boundary conditions. Note that the outer boundary conditions

for subsonic disturbances (Z2) are inherently satisfied by choosing the

negative exponent in equation (39) and by retaining only the viscous so-

lutions S and 5, which decay exponentially far from the wall. The three

boundary conditions at the wall (eqs. (31)) remain to be satisfied.

The inviscid functions will be denoted by the subscript inv. The

satisfaction of boundary conditions (eqs. (31)) leads to the following

determinantal relation:

9inv,w 95,w 95,w I
I

_inv,w _5,w _5_w I

8inv,w 85,w 85_w I

= o (66)



2O

but from equations (59e) and (65a), e5 = J5 = O, so that the secular

equation becomes

?inv_w = _5,__w + einv;w _ (67)

Jinv,w J3,w Jinv,w e5,w

With the aid of the identity derived from the inviscid equations (5_b)

and (5¢d),

9inv;w = (y- 1)M2c + i(y- l)_c [_- T_ 9inv;w
Yin_,w (r - 1)_2o2_ Ohnv,w (6S)

the secular equation (67) reduces to

msid__ + (r - l)_2c
q_inv,w = . YS_w 85;w

°¢inv'w i - i(T - l)M2c _5--_FWw - T_ 2]es,wLc (r - i)_2e

(69)

Appearing in equation (89) are the ratios m3,w/J3,w and mS,w/SS,w,

which upon evaluation from the viscous solutions are

= -i

Y3,w w w

_l/2_(l) 3/2]d_ d_

_w n_/2_(Z) F2 5/2]d__l/3LY(it)

(7o).

and

: - t Ydwt )w

{o_ ,.__/_=,(l)F2so "I/3LZ (ir_o)3lJd_O

m_/2_(l)F2=J-/sL7(imo)s/*]
(71)
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Let

z = -g_ I

Yzo -_0 w

also define the Tietjens function

F(z)

-_ _l/2H(<)r2 3/2]d tt/3Ly (it)

and an auxiliary function

-

Z 0

_ _z/2_(1)P._o"i/3[_(i_o)3/_]a{o

• 3/<.(z)r2 3/,.]•_.o '-'113[_(i{o)

Equations (70) and (71) can now be written

Y3,w w , w

and

%,,,, : _ VZdw\d_o/w _(zo)

Note here that z0 = ql/Sz so that

{%]

(73)

(7s)

(7_)

(75)

(76)
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In terms of the universal functions F(z) and _(z0) , equation (69) be-

comes

_Y F(z) + G(z 0
iz dY w w Tw

_w (r - i)_2o2] ,_ w
(77)

Equation (77) is a proper secular equation; however, to avoid some of

the difficulties involved in the expressions for (dy/dY)w(dY/d_) w, the

equation is further reduced. Let

(_) I_) = (z+_) cZdYw w Ww
(78)

where it can be shown that

ycW' 3_w w

= c _---V-- dy - i (79)

Further, define

K m (Y - i)M2c2 (80)

Tw

Since from the inviscid equations (34b) and (34c) and the definition

G _ (_,/_2_),

_inv/w = i

_inv_w W_ I

c %

(Sl)

equation (77) can now be written, after some manipulation, as

-W% =

q
¢(z) - i /

_+f

[ _(zo)l
+K

i! i_-__.
h+l " "

(s2)
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where

i

_(z) _ 1 F(z) (85)

is the modified Tietjens function. Manipulating the Tietjens function

and its derivative with respect to z shows that

F(z) ®(z)- 1
_(z) = y _ F(z) - zF'(z) = i ¢'(z)

z

(s_)

The functions F(z), _(z), and ¢(z), as recently recomputed, are repro-

duced for convenience in table I. For z > i0 an asymptotic form of

the secular equation (82) can be obtained as shown in appendix C. The

. result is

Ww- T % _ (i+ z)(l+ _o-i/Z)p + i + 2(i+ _)p +T-j_ o-I

+(2 s + 3_°-I_] }+ + .
(ss)

where

Computation of Neutral Stability Characteristics

For a given boundary-layer profile (W,T), choose a value of

c > 1 - (i/q). _hen

(i) Obtain the inviscid solution and record the values of Gw

various assumed values of _.

for

(2) Find the values of z and _ for which equation (82) or (8S)

is satisfied.

(3) Compute cd_e from the relation
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(4) The quantities _ and caR_ being known, the Reynolds number

can be computed.

This procedure is to be repeated for successive values of c to obtain

further points of neutral stability.

In some cases it may be convenient to use the Heisenberg-Lin formu-

lation of the inviscid solution particularly if _ is known to be a

small quantity. A formulation for this case has been given by Mack

(ref. 6). A slightly different formulation, which is related more

closely to the present secular equation (82), is given in appendix D.

Special Cases of the Secular Equation

A few of the significant aspects of the current formulation are

brought out through the following special cases:

Compressible boundary layers over insulated surfaces. - The secular

equation for the stability of insulated boundary layers is obtained by

taking T_ = 0 in equation (82). The secular equation then becomes

-W% = x

The first bracketed term on the right side of equation (82) is a func-

tion of z alone, while the factor K -- (Y - I)M2c2 in the second
Tw

bracketed term introduces quantities dependent on the chosen boundary

layer and value of c. TheSe tend to make the eigenvalue determination

more tedious. In the limit of Mach number zero (M = 0) only the first

bracketed term survives and exactly the result of Lees and Lin (ref. i)

is obtained. Solutions of equation (88) have been obtained in references

 (zo)
4 and 6 where it is shown that the factor K F--_'-' which directly rep-

resents the effect of the temperature fluctuations, becomes important

at Mach numbers of the order of 2. It is shown further in reference 4

that equation (88), which restricts consideration to the leading terms

in the viscous solutions, gives adequate results only on the "upper

branch" of the neutral curve where _e >> i. The next order terms in

the viscous solutions, namely, the leading dissipation terms and higher

order shear and conduction terms, have been considered and thoroughly

discussed in references 4 and 5.
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Mach number zero. - The secular equation for a Mach number zero

flow is obtained by setting K equal to zero in equation (82). This

procedure leaves

I 01zl- ]h

- V = [i - i a<z°l¢(z)x+ax®<z) (sg)

The numerator on the right side of equation (89) represents the result

of Lees and Lin (ref. i), but for noninsulated surfaces_ even at zero

Mach number, the temperature fluctuations enter as shown by the denom-

inator of equation (89).

CONCLUDING REMARKS

For Reynolds numbers sufficiently large that the dissipation terms

in the disturbance energy equation are negligible, the stability of a

three-dimensional boundary layer to a plane-wave disturbance of arbitrary

orientation reduces to a two-dimensional stability problem governed by

the boundary-layer velocity profile in the direction of wave propagation

and by the mean temperature profile.

A procedure for exact calculation of the inviscid solution is pre-

sented while the viscous solutions including that for temperature fluctu-

ations are obtained in terms of universal functions. The satisfaction

of boundary conditions on velocity and temperature fluctuations leads

to a secular equation from which it is apparent that consideration of

the temperature fluctuations can have effect on the calculated eigen-

values for insulated compressible boundary layers as well as for non-

insulated boundary layers at zero Mach number.

It is shown further that the viscous effects on the disturbance

flow near the wall are restricted to a narrow layer, the thickness of

which is always less than the distance to the critical layer_ even in

the case of the critical layer approaching the wall. This tends to

support the applicability of Dunn-Lin ordering to all boundary-layer

stability problems.

Lewis Research Center

National Aeronautics and Space Administration

Cleveland, Ohio, February 28, 1962



26

APPENDIXA

SYMBOLS

The symbols used in the present report are, in general, those com-
monly used in the literature on boundary-layer stability. In somere-
gretable instances a symbol will represent more than one item. The mul-
tiple uses will be indicated here and confusion should be minimized.

A

B

c

Cp

F(z)

_(y)

f(y),h(y)

G

_(z)

K

k

Lref

_ef

m(y)

P

e_. (_S)

eq. (_6)

disturbance propagation velocity

specific heat at constant pressure

Tietjens function (eq. (73))

composite longitudinal velocity fluctuation amplitude,

(f cos @ + h sin 8)

amplitudes of velocity fluctuations in x- and z-directions,

re spectively

_'/C_2_

auxiliary function (eq. (74))

2!_ - .I)M2°

thermal conductivity

reference length

. * *
Uref/_Y R Tref

viscosity fluctuation amplitude

pressure
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P

Q'(x,y,z,t)

q(y)

R*

t_e

Reref

r(y)

T

Te

Tref

t

t*
ref

U e

Uref

U_V_W

U

U

V

W

z-31214 

fluctuating component of flow quantity

fluctuation amplitude

gas constant

ref_ref/Ve

UrefLref/Vref

density fluctuation amplitude

static temperature

local external temperature

reference temperature

time

Lref/Uref

resultant external velocity

* cos(e _)reference velocity_ Ue

velocities in x-_ y-, and z-directions_ respectively

real part of secular equation (appendix D)

u*/u_ = u/u e

imaginary part of secular equation (appendix D)

composite dimensionless mean velocity_

w W /w e _- W'/W" e

x_z surface coordinate directions

y Tollmien variable for momentum equation

Y0 Tollmien variable for energy equation

u + w tan 8 tan

i + tan 8 tan
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Y

z

z0

cg

T

C

n

e

e(y)

V

P

U

normal coordinate

-_w argument of the Tietjens function

-_0 w argument of the auxiliary function

wave number, 2_/h

normal velocity fluctuation amplitude

ratio of specific heats

boundary-layer thickness

thickness of viscous layer near wall

ordering parameter, (cuR_)-i/2

Y - Yc

angle of wave propagation direction relative to x-axis

temperature fluctuation amplitude

wavelength

absolute viscosity coefficient

second viscosity coefficient

kinematic viscosity

pressure fluctuation amplitude

density

Prandtl number

modified Tietjens function

quantity related to normal velocity fluctuation amplitude

angle between resultant external velocity and x-axis
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Subscripts :

c

e

i

inv

r

ref

w

Quantity evaluated at critical point

local condition outside mean boundary layer (external)

imaginary part

inviscid

real part

reference quantity

quantity evaluated at wall

Superscripts:

* dimensional mean quautity

*' dimensional fluctuating quantity

' denotes differentiation with _espect to y beyond eq. (15)
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APPENDIXB

The

flow with constant Prandti number are as follows:

COMPLETE DISTURBANCE EQUATIONS FOR PARALLEL FLOW

complete three-dimensional disturbance equations for a parallel

Continuity :

+_*_+__+_*, _=-p k_s-+_+ (Bz)

Momentum:

P t,_-'j- + _* _ + "* _ + _*' = -

/_ 82u*, 52u., 52u.,
+

5x.2 + _.2 + 5z.'----E-

82v., 52w.,

2 (_ _.,/_%' _ a2_*'- +

P tt_-_-_-+ u* _ + _* _7-7 = - _.

./52v., 52v., 82v.,

+_ t--_. 2 + 2 &,Z..----_+--bz* 2

82u., 82w.,

2 (_ _ .)[_%' _2._., a2w..'_
_.2 "_-'_'_/
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Energy :

J_2w., _2w*, _2w.,

+ _ _x. 2 + -- + 2

+y

+ w* z_ + v*' _-_ = \_t*

_(_2T.,+ _2_.,+ a2w. + 1(_*_(er*,]

+ ._*'_z_.+ _{_*'_ _(_-_)
o _._. _k_"_--]

+ _LL[/m*__ _]

State:

T *t_*' _ _*'+- (Be)
p* p* T*

Equations (BI) to (B6) are made dimensionless as in the text of this

report. A disturbance of the form of equation (15) is introduced and the

subsequent transformations carried out. The resulting transformed equa-

tions are:

Continuity:

i(W - c)r + P'm = -P(m' + i_) (B7)
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Momentum:

p[i(w- c)J + w'9] = - +

o/Rere f

+2_2 -_ _2(i_, _ _)
3 c_Rere f c_Rere f

[mW" + m'W' + _' (J '+ io_2qD)] (38)

i_S(w - c)m= _'
]_ef

+ ---/--- _( 2_" + i J '
Reref

+ 2oo PP. -p (_o"+i._') + cc r_mw,
s Rere f Rere f t--

2 _, )]+2_,_,+Z(_.- )(m'+iY

(sg)

Energy :

p[i(W-c)e + T'%0] = i0--_)(W- c)_ + iacuRere f

+ (4-_ o_(_-_ + Lco_(_-_)

[_,_,_o__+_,_,_ _ _])
(Bio)

State :

r 8 (Bii)
p T

In these equations; as in the main text_

w

W = u + w tan @ tan Y (BI2)
i + tan @ tan

The fluctuating viscosity can be related to the temperature fluctuation

through

m = e(d_T) (BI3)
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while the normal gradient of meanviscosity can be expressed

_, = T'(d_AT) (Bl )

The continuity and momentum equations (B$) to (Bg) are identical

in form to those for two-dimensional boundary layers with respect to

two-dimensional disturbances; however; in the energy equation the dis-

sipation term having coefficient (y - l)MSef/C_R_re f does not transform

as is seen by the inability to express this teri in W and _ alone.

Even in the case of two-dimensional boundary layers (Y = 0) with respect

to three-dimensional disturbances; the dissipation term is

_e_ m(c_O) + 2_u' (cfo--_@+ i_2

and does not transform confirming the result of Dunn and Lin (refs. 4

and 7).

The Dunn-Lin ordering procedure (eq. (AT)) used to obtain the viscous

solutions to disturbance equations indicates that the leading dissipation

term

(Y- l)_ef 2_[ _ cos(@ Y)_]

'f' cos Y + w'h' sin

caRere f

is one order of magnitude smaller than the leading conduction term
i

_e" if the analysis is restricted to consideration of
ac_Reref ; thus_

the leading viscous terms only; the disturbance equations for three-

dimensional boundary layers to three-dimensional disturbances transform

to those for a two-dimensionalboundary layer to two-dimensional dis-
i

turbances. Such restriction is valid when (c_Reref)i/2 << i.



34

APPENDIXC

In terms of
pressed as

Let

so that

SECULAREQUATIONFORLARGE z

F(z) and _(Zo ) alone, the secular equation (82) is ex-

c i
+ _ - r - a _wW_/

The asymptotic variation of F(z) from Lin (ref. 14) is

i

F(z) zS/2e'i_/_ - S/4

The asymptotic forms of

are

and

(cl)

(c2)

(as)

: p + ip

F(z) and _(Zo) in terms of p to order

(c_)

p2

(cs)

F(Zo) e-!/2 + ip +_(Zo) - 1 - F(z0) - z0F'(zo) (c6)
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When (CS) and (C6) are substituted into equation (CI), the secular equa-

tion for large z (small p) is written

- T % = (i+ _)(i+ _o-i/2)p+ i + 2(i+ _)p + _ o-i/

/_ + 3_o-1\7 ]
+ (C7)

Note in equation (C7) that to order p, the real and imaginary parts of

the right side are equal. The quantity z is related to p by

( 1 _2/3
z= k_) (o8)



36

APPENDIX D

SECULAR EQUATION USING HEISENBERG-LIN INVISCID SOLUTION

In order to obtain the Heisenberg-Lin inviscid solutions_ the in-

viscid equations (36) are written as a second-order differential equa-

tion in 9:

dYLT_ _2(W_ c)_J T _--0
(m)

Then a solution of the form

m = m (°) + _2m(1) + _¢9 (2) + • (D2)

is sought. The two solutions that result from this procedure (following

ref. 6) are

91 = (W - e) n__ _2nh2n
(D3a)

and

where

_2 = (W - c)_2nk2n+l
(D3b)

ho=l;
h2n =/Y

_YT -M_(W- °)2_ (W- 0)2

(w- °)2 _o
h2n_2 dy dy

(D4)
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and

f Y N 2
kl-- T - M (W - °)2

(w- °)2 aY

k2n+l _fY Y )2

(w - c
T k2n_l dy dy

(DS)

Now the ratio _inv,w/_inv,w is found by first obtaining that combin-

ation of solutions i and 2 that_ in the outer uniform mean flow, satisfy

the outer condition _$ + _i M2(I - c)2 _e = 0, and then using the

following identity from the inviscid equations

T I +
_inv,w= i w%_v,w W_°M2_in_

The resulting expression is

9inv;w = i (D6)

' _w + _l - M2(_, °)2_,_Jinv,w Ww__+ __ _i;e

o o2_,e + _ -_(1 - o)2_,e

The resulting secular equation is

¢(z)- i + _ F-'_-J

(u- i) + iv_ ---k-_'(z[l_+ 1 - 1-_-_(z°)'(z)_ -_z)( _°T-_Vw]

where u and v are given by

(D7)

.)
u = L + TT (I - c) 2 - AI + A2ro_ +

(DSa)
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and

_ _o + _-$- (i ' °)2
) (DS'o)

Further

L = i + T-_ Klr

(D9a)

and

The coefficients

WwC

v0 = T-_ Kli

w_o_[__-',_I
---_ _ wc_ L_T--JJ

AI and A2 are given by

(Dgb)

_-- _(i IIIIC)_I Hi

AI = (i - c)2

(Dio_)

and

A 2 = A_ - 2_ 2
(D10b)

and KI, HI_ and H 2 by

jo_ _ - _2(w- c)2Ki= _- (w-o)2

D -T c)

HI _W 2

(Dlla)

(Dllb)
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and

b
_2 --_ T -[_(w- °)2

(w- o)z4 0_Y )2

(W - c
T <v¢y (Dllc)

Expressions for u and v to order _5 as well as procedures for

evaluating the Hn and Kn integrals are given by Mack (ref. 6).

The calculation of neutral stability characteristics is usually

performed by the following iteration procedure: First, assume _ = 0

in equation (OSb), then find z for which Vo(C ) = Im [RIKS (eq. (Dr))].

Set u = 1 + RZ [RHS (eq. (DT))] and solve for the first approximation

to a by using equation (DSa).

_i " _w(l- c)2 w_c[L_ _2(i_ c)2]_ (DI2)(u- _) +<- (i - c)4 j i

The next iteration on_--is_carried out by substituting _i into equa-

tion (DSb) to give vI and the procedure is repeated with the A2r

term in equation (D8a). Successive iterations can be carried out with

the additional terms of equation (D8) given by Mack (ref. 6). The

value of _Re can be computed from the final value of z

N z5
_e : (sT)

and then with _ known the value of Re is obtained.

The procedure of this appendix_ perhaps_ has a slight advantage

over that of Mack since the quantity _ appear% only on the right side
of the secular equation (D7) rather than on both sides.
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TABLE I. - TIETJENS AND AUXILIARY FUNCTIONS

For O < z < 6.78, the table is taken from Mmck (ref. 6). For 6.80 _ z _ 8,00, the functions Fr and Fi

the data o£ Miles (ref. 15), and the other functiona are calculated from their definitions (85) and (84).

the functions Fr and FI are from Milea and the other functions are calcul_ted from, their definitions.

numbers are correct to IC.O0002_

.......... __

0.0, _.9_520I -9._05,71-0.2878_I-0.1_47_190.6,8_1-11.7_57_
.08 8.58153 -4.85142 -.09858 -.08958 10.48902.125.7_1,_!:_:25248I.14554-.09704! 7.1058_-5.86208-5.9O552

.16 4 58251 1 -2.42257 -.18541 - 13996 5.41699 -2.92185

.20 5.54347 -i.95612 -.24895 -.18949 I 4.40567 -2.55144
I

:522:_7941-1:20460_:414151 _:_755I 2:_0 16_508-1.48942

._6 2.05825 -1.06849 -.46792 -.47555 l" 2.81980

.40 1 87127 -.95954 -.51878 - 57122 I 2.59924 -1.15664
i I

•44 I. 72027 -. 86972 -.56483 1 -'88205 I 2.22005 -i. 02502

•48 1.58475 _ -.79477 -.80557 i -.80655 I 2.07170 _ _ _0_9

.52 1.48886 -.75108 -.65204 1 -.94520 I 1.94710 -.84978

.88 1.89837 -.67621 -.64674 -1.09782 I 1.84105 -.77927

.60 1.32021 -._2841 -.84572 -1.2_550
i

-.58654 -.61884 -1.45945 ].64 1.25208
.68 1.19220 -.54895
.72 1.18920 -.51548

.76 1.09200 -.48527
1.04975 -.45784

1.01168 -.48277

.97729 -.40975

.94607 -.58846

.91762 -.5887_

.89162 [ -.$5029

.88778 -.55505

•94585 -.51680
.82585 -.50148

.8O

.84

.88

.92

.96

I. O0

I. 04

I. 08
1.12

1.16
i. 20

1.24
i. 98
1.52

1.56
1.40

1.44
i. 48

1.52
1.56

1.60

1.64

1.68
1.72
1.7fl

1.80

1.84
I •88
1.98

1.96
2.00

2.04

2.08
2.12

2.18
2.20

-.56816
-.48827
-.57714

-.25449

-.06255
.15486
.35065

.57718

.80612

1.02985

-1.62274
-1.80010 I

-1.88919

-9.15869 I

-2.30900 1

-2.43507 I

-2.52556 I

-2.88520 I

-2.60584

-9.59583

,80698

,78998

.77565

.75871

.74480

.75192

.71969

.70852

.89765

.68765
.87820
.66950

.68090

.65294

.84540

.65824

.85142

.82491

.61868

,61271 I
8o697!
.60145 i

.59607

.59087

.58580

.58085

.57599

1.94187 l-2.55250

1.45751 -2.48569
-.28695 1.81597 -2.59928

-.97518 1.76988 -9.99845

-.25995 I 1.90552 -2.18785

-.24750 i 2.02125 I-2.07154
-.25516 2.11911 -1.95271
-.22547 2.20078 -I.85584

-.21918 2.28814 -1.71667

-.20120 2.52504 -i.60244-.19055 2.56720 -1.49191

- 18018 _ 2.40215 -1.58858
-.17004 1 2.42925 I-1.28580

-.16011 i 2.44968 I -1.18605

15057 " 2 46440 -1.09279 I
-:14078 ,{ 2147425 -1.00586

-.15155 I 2.47995 -.91848
-.122oo, 2.48199 -.857oo
-.n278 _ 2.48090 -,v8897
-.10560 1 2.47709 -.68415

-.09450 _.47074 -,61250

-.08545 2.46220 [ -,54522
-.07642 2.45165 -.47671
-.06742 2.45917 -.41260

05842 2 49495 55074

::04942 2:40805I ::29099 1
-.04040 2,59154 -.25526
-.05158 2.57248 1 --17747 1

-.o222____-.12555 I

1.75001 -.71696

1.67095 -.66150
1.60200 -.61097
1,54195 -.56497

1.48745 -.52259
1.45954 -.48517

1.59658 -.44622

1.55794 -.41127
I._2289 -.57798
1.29104 -.54611

1.28190 -.51541

1.25504 -.28558

1.21019 -.95651
1,18698 -.22805

1,285!4 -.90007
1.14448 -.17245

1.12471 -.14512
1,10566 -.1t80_
1.08715 -.09107

1.08892 -.06426
1.05084 -.05759

1.03274 -.01105
1.01448 .01541

.99590 .04165

.97889 .06760

.95755 .09527

•95714 .i1958

.91692 .14581
•89451 .16749
.87198 .19098

.84859 .21580

.82455 .25527

.79951 .25586

.77549 .27524

.74897 .29550

.71984 .50995

.652_0 ,52509

.88417 .55865

.68586 ,55058

.80747 .58085

.57908 .56945

2.24 10.57119 1-0.01515 2.52982
2.28 I .56644 I -,00597:2.50629

2.52 [ .56172 1 ,00527 2.28152
2.86 I .55701 I .0t457 2.25495

2.40 ! .55229 I 02594 2.22720
I

2.44 I .54755 l .03559 !2.19811

2.48 I .54271 1 .04292 2.16771

_.52 _ .55782 I 05255 12.15607
2.56 I .55285 I .06225 2.10525

2.60 { .52772 I .07201 2.06927

2.64 I .52246 I .0.8189 2.05426
_.88 I .51704 1 .09184 1.99829

2.72 I .51142 I .I0188 1.96146
2.76 I .80559 1 .11200 1.92_8

2.80 I .49951 1 .11219 1.88586

2.84 I .49517 I .15245 1.84692
2.88 I .48855 I .14276 1.20780

2.92 I .47928 I .15512 1.78843
2.96 I .47227 I .18550 1.72894

5.00 I .48458 I .17590 1.28848

5.04 I .45849 I .18429 1.65018
5.08 l .44797 I .19484 1.61118

5.12 [ .45898 I .20495 1.57264
3.16 I .42951 I .21515 1.55465
3.20 i .41952 ] .22519 1,49758

5.94 I .40900 I .95509 1.46089
5.28 I .59791 I .24476 1.42584

5.52 I .58628 I .25417 1.59089
5.56 [ .57400 I .26524 1.55741
5.40 I .56115 I .27t95 1,52521

5.44 I .54789 J .28018 1.29427
5.48 i .55564 1 .28787 1.26487

5.52 _ .51900 I .29497 1.25845
5.56 I .50580 I .50159 1.20962

5.60 I .28807 I .50706 1.18452

5.64 I .97186 1 .51188 1.16046

5.68 I ._5522 I .51579 1.188(>8
5.72 i .25824 I .51871 1.11719

5.78 [ .22098 I .59057 1.09778
3.80 I .20556 1 .5_131 1.07983

5.84 I .18807 ] .89009 1.06553
5,88 I .16885 I .51928 1.04825

_.92 I .15149 I .81646 1.05458
5.96 I .15450 I .51245 1.02221
4.00 I .I1605 I .80721 1.01118

4.04 I .10218 I .50088 1.00156
4.0_ I .08705 ] .29545 .99277

4.12 ! .07272 ] .28501 .98554
4.16 i .05954 ] .27569 .97898
4.20 t .04699 I ,26560 .97569

4.24 , .05574 , .25488 .96955
4.28 I .02564 I .24361 .96594

4.52 I .01871 I .23197 .963884.56 .00898 .22010 : .96161

4.40 [ .00259 ] ,20815 .96058

are _nterpolated from

For 8.I0 < z < I0.00.

It Is expeCted--that all
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TABLE I. - Concluded. TIETJENS AND AUXILIARY FUNCTIONS

For 0 < z < 6.76, the table is taken from Mack (ref. 6). For 6.80 < z <_ 8.00, the functions Fr and Fi are interpolated from

the data of Miles (ref. 15), and the other functions are calculated _rom their definitions (83) and (84). For 8.10 < z < I0.00,

the functions Fr and F i are from Miles and the other functions are calculated from their definitions. It is expeCted--that all

numbers are correct to +0.000023

I Fr

4.44 -0.00305
4.48 -.00740

4.5_ -.01072
4.58 -.01308

4.60 -.01455

4.64 -.01523

4.68 -.01519
4.72 -.01452

4.76 -,01331
4.80 -.01164

4.84 -.00955

]4.88 -.00722

14.92 -.00460
14.96 -.00180

i5.00 .oon3

5.o4 .oo414
!5.08 .00720

!5,12 .01026

i5.16 i .01328
5.20 i .01626

5 24 i .01913
5.28 .02194

5.32 i .02462
5.36 .02717

5.40 ,02958

5.44 .03185

5.48 .03597
5.52 .03594
5.56 .03776

5.60 .03942

5.64 .04093
5,68 .04230

5,72 .04351
5.76 .04459

5.80 .04553

5.84 .04633

5.88 .04701
5.92 T *04757

5.96 .04802
6.00 .04836

6.04 .04860 i

6.08 .04874
6.12 .04880

6 16 .04878

8.20 [ .04868

6.24 .04851
6,28 .04828

6.32 .04800
6.56 .04767

6.40 .04730

6.44 ,04888
6.48 _ .04643

6.52 .04598
6,58 .04546

6.60 .04495

Ft $r

3.19617 I 0.96023

.18436 .96048

.17279 .86130

.18155 .96261

.15072 .96457

•14037 .96853

•13054 .96902
.12128 .97180

.11259 .97483

.I0451 .97806

.09702 .98144

.09013 .98495

,08382 I .98853
.07808 { .99217

.07289 { .99583

.06822 [ .99947
•06404 } 1.00308

•06052 { 1.00662
•05704 ] 1.01009

.03416 ! 1.01345

.05168 { 1.01870
• 04951 I 1.01982

,04766 I 1,02280
.04611 { 1.02562

.04482 [ 1.02829

•04376 { 1.03079
• 04992 _ 1.03313

•04228 [ 1.03829
.04177 _ 1.03728
.04143 } 1.03911

•04121 { 1.04076

.04111 I 1.04224

.04110 1 1.04557

.04117 1 1.04473

.04150 i 1.04574

.04149 I 1.04660

.04172 { 1.04733
.04198 1 1.04791
.04226 [ 1.04838

.04255 { 1.04872

,04285 I 1.04895
.04314 I 1.04908

.04545 i 1.04912
04571 { 1.04906

04397 I 1.04893

04421 I 1.04872

04442 I 1.04645

04460 { 1.04812
04476 I 1.04774

04489 [ 1.04732

04496 I 1.04666
04504 I 1.04939

04307 [ 1.04564
04507 I 1.04550
04503 I 1.04474

$i G I

0.18780 ] 0.05911 0.08391 6.64

.05920

.05927

.05933
,05938

.05942

.05943

.05942

.05939

.05933

.05925

.05913

.05900

.05883

.05864

.05842

.05817

.05790

.05761

.05729

.05695

.05660

.05622

.05582

.05541

.05499

.05455

.05410

.05365

.05318

.05270

.05222

.05174

.05125

.05076

.08026
.04977

.04928

.04879

.04830

.04781

.04733

.04685

.04638

.04591

.04545

.04499
•04454

.04410

.04386

,04323

.04281

.04240

.04199

.04159

.17577

.16454

.15350

.14527

.13394

.12461

.31617

.10832

.10104

.09432

.08814
,08248

.07733

.07267

.06846

.06470

.06135

.05839

.05580

.03355

.05162

.04998

.04661

.04749

.04859

.04590

.04538

.04503

.04482

.04472

.04474

.04484

.04502

.04525

.04553

.04585
.04618

.04653

.04699

,04724

.04758 i

.04790 !

.04820 {

.04848

.04872

.04893 [

.04911

.04925
.04935

.04941

.04943 !

.04941

,04936

.04926

.08195 6.68 .04587

.09012 6.72 .04332
• 07841 .04277

• 04222

•07532 6.84 [ .04167

.07393 6.88 } .04113

.07263 6,92 ,04039

.07141 .04005

.07027 7.00 .03951

.06920 7 04 ; .03898 :

• 06819 7.08 I .03847
.06725 7.12 .03799
.06636 7.16 .03752

,06582 7.20 .05706

.06472 7 24 ,03661.06397 : .03617

.06325 7.32 .03575

.06256 7.36 .03536 ,
•06190 7.40 •03497 ]

J

• 06127 7 44 ! .03460
• 06066 71_8 .03425

.06007 7.52 .03390
•05949 7,56 .03357

•05894 7.60 .03324

•05839 7.64 .05293 T
• 05788 7.68 .03263 !
.05734 7.72 I .05235

,05682 7.76 .03207

•05631 7.80 .03180

.05581 7.84 .03154 !

.05531 7.88 ; .03129

.05482 7.92 _ .03104

.05453 7.96 [ .03081

8.00 .03058

•05337 8.10 .03004
• 05289 6.20 .02952

•05241 8.30 .02903
•05194 8.40 .02855

.05147 8.50 .02810 .03073

.05100 B 60 i .02765 .03014
•05053 9.70 I .02721 .02957

• 05006 3.80 ,02678 { .02903

• 04960 _.90 .02836 ] .02851

.04696 .02554 .02752

.04822 .0253.4 _ .02705

.04777 9[30 t .02475 t .02659

,04732 9.40 I .02436 ] .02615

.04687 ).50 ,02399 i ,02572

.04643 !!i ,02362 ] .02330

.04599 _ .02326 .02488

,04558 .02291 .02448

.04312 I_90 .02257 ] .02409• 04469 )*00 .02223 .02371

1.04417 0.0491_ 0.04119 I0.04427
1•04359 .04897 .04080 [ .04385

1.04300 .04878 ,04042 [ .04344
1.04242
1.04184

1.04127

1.04071
1.04015
1.03959

1.03904

1.03850
1.05798
1.03749

1.03703

1.03656

1,03612
1.03568

1.05526
1.03488

1.03450

1.03413

1.03379
1.03345

1.03313
1.03281

1.03251

1.03223
1.03196

1.03169
1.03143

1.03118

1.03094
1.03070

1.03048
1,03026

1.02975
1.02925

1.02878
1.02832

1.02788

1.02745
[.02702

1.02660
t.02619

[.02579

[.02539
L,02500

[,02461
L.02423
L.02587

.02350

.02315

.02291

..02247

.02213

• 04855 .04005 { .04303

.0483C .03968 I .04262

•04801 .03932 ] .04222
.04771 .03897 { .04183

.04736 .03862 i .04144
,04703 .03828 I .04106

.04667 .03795 I .04088

.04628 .05782 { .04031

.04588 .05729 [ .05994

.04547 .03697 { .03957

,04505 .05666 J ,03922
.04463 .05635 I .03887

.04420 .03605 { .03852

.04376 .03575 { .03817

.04532 .03546 [ .05784
•04288 •05517 J .05751
.04244 .03489 [ .03718

• 04200 .03461 [ .03686

•04156 .03434 ] .03654
.04112 .03407 ] .03623

•04069 .03380 } .03592
.04026 .03354 [ .03562

.03983 .03328 l .03532

•03942 -03302 ] ,03502
.05901 .05277 } .03473

•03861 .03252 ] .03445
•03822 .03227 [ .03417

.03783 .03203 ] .03389

• 03744 .03179 [ .03362
.03706 .03155 I .03535
• 03670 .03132 { .03308

.03635 .03109 I ,03282

.03549 .03053 } .03218

.03468 .02998 [ .03156

• 03392 .02945 ] .03097
•03319 .02892 } .03039

.03250 .02842 { .02983

.03185 .02794 [ .02929

.03122 .02746 { .02876

.03062 .02699 } .02825

.03005 .02654 ! .02776
.02950 .026111 .02728

.02896 ,02568 I .02681
,02844 ,02527 I ,02636 i

,02794 ,02486 [ ,02592

.02745 .02446 I .09549

.02698 .02408 I .02507

.02652 .02371 ] .02487

.02607 .02335 J .02428

.02463 .02300 { .02389
,02520 .02265 I ,02351

.02479 .02231 [ .02315
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